
Combine

Professor Larry Heimann

Carnegie Mellon University

67-443: Mobile App Development

Publishers

• Provides data when available and upon request.

• A publisher that has not had any subscription requests
will not provide any data.

• Describe publishers with two associated types: one for
Output and one for Failure.

Subscribers

• Subscribers are responsible for requesting data and
accepting the data (and possible failures) provided by a
publisher.

• A subscriber is described with two associated types, one
for Input and one for Failure.

• The subscriber initiates the request for data, and controls
the amount of data it receives.

• It can be thought of as "driving the action" within Combine,
as without a subscriber, the other components stay idle.

The Sink Subscriber

• Most common way to create a subscriber in Combine is
with the sink() method.

• If the error type is Never then the sink method will provide
one simple closure to handle emitted values.

• In cases where the publisher can fail or complete, sink
provides another closure called receiveCompletion. It
allows you to process completion and failure events.

• Of course, you also have to handle the actual processing of
values with another closure receiveValue.

Pipelines & Operators

Apple Foundation Publishers

• There is a generic Publisher protocol so you can create
customized publishers

• Apple provides 3 popular Publishers in Foundation

• DataTaskPublisher

• NotificationCenter.Publisher

• Timer.Publisher

DataTaskPublisher

• The URLSession class provides the convenient
dataTaskPublisher(for:) method, which returns a
DataTaskPublisher based on a URL. This is most useful for
basic API calls.

• The dataTaskPublisher emits a tuple of (data: Data,
response: URLResponse), much like the existing
closure-based handler. The error is handled by the
publisher’s failure event.

• In a typical API call that returns some JSON, we map to the
received data, decode to a matching type and handle errors.

DataTaskPublisher

let url = URL(string: "https://
jsonplaceholder.typicode.com/posts/1")!

let cancellable = URLSession.shared

 .dataTaskPublisher(for: url)

 .retry(1)

 .map(\.data)

 .decode(type: Post.self, decoder: JSONDecoder())

 .replaceError(with: .empty)

 .sink { it in

 print(it)

 }

