Combine

Professor Larry Heimann
Carnegie Mellon University
67-443: Mobile App Development



Publishers

-+ Provides data when available and upon request.

- A publisher that has not had any subscription requests
will not provide any data.

- Describe publishers with two associated types: one for
Output and one for Failure.

<Output Type> <Failure Type>

written as <Output, Failure>




Subscribers

+ Sulbscribers are responsible for requesting data and
accepting the data (and possible failures) provided by a
publisher.

A subscriber is described with two associated types, one
for Input and one for Failure.

he subscriber initiates the request for data, and controls
the amount of data it receives.

't can be thought of as "driving the action” within Combine,
as without a subscriber, the other components stay idle.



The Sink Subscriber

Most common way to create a subscriber in Combine is
with the sink () method.

f the error type Is Never then the sink method will provide
one simple closure to handle emitted values.

n cases where the publisher can fail or complete, sink
orovides another closure called receiveCompletion. It

allows you to process completion and failure events.

- Of course, you also have to handle the actual processing of
values with another closure receiveValue.



Pipelines & Operators

<Output Type>
<Fai|ure Type>

Publisher
<Output, Failure>

<Output Type>
<Failure Type>

Publisher
<Output, Failure>

: <..,.,utT,,,e>

<Fai|ure Type>

Subscriber
<Input, Failure>

<
<

Input Type > <Output Type>

Failure Type <Fai|ure Type

Operator

<Input, Failure> to <Output, Failure>

< Input Type >
<Fai|ure Type>

Subscriber
<Input, Failure>




Apple Foundation Publishers

- There is a generic Publisher protocol so you can create
customized publishers

- Apple provides 3 popular Publishers in Foundation

DataTaskPublisher

NotificationCenter.Publisher

Timer.Publisher



DataTaskPublisher

- The URLSession class provides the convenient
dataTaskPublisher (for:) method, which returns a

DatalaskPublisher based on a URL. This is most useful for
basic API calls.

- The datalaskPublisher emits a tuple of (data: Data,
response: URLResponse), much like the existing

closure-based handler. The error is handled by the
publisher’s failure event.

In a typical API call that returns some JSON, we map to the
received data, decode to a matching type and handle errors.



DataTaskPublisher

let url = URL(string: "https://
jsonplaceholder.typicode.com/posts/1") !

let cancellable = URLSession.shared
.dataTaskPublisher (for: url)
.retry (1)

.map (\.data)

.decode (type: Post.self, decoder: JSONDecoder ())
.replaceError (with: .empty)

.s1ink { 1t 1n

print (1t)



