
Reactive Programming
In Swift

Professor Larry Heimann

Carnegie Mellon University

Information Systems

What is Reactive Programming?

• Is a declarative programming paradigm that is
based on the idea of asynchronous event
processing and data stream
• Declarative: its main focus is on “what to

solve” in contrast to an imperative style
where the main focus is “how to solve”.

• Asynchronous processing means that the
processing of an event does not block the
processing of other events.

• It provides a way to handle and react to data
streams as they occur, rather than explicitly
programming the steps to execute

Reactive Programming
is all about data streams

Reactive programming arose
from the problem of how to
handle streams of data from a
variety of sources.

• From external APIs

• From user clicks in a game

• WebSocket communications

• Form inputs and validation

• Timers and calendar alerts

Key concept in reactive programming:

The Observer Pattern

What is the observer pattern?

• Allows other objects to
observe events and get
notifications when state
changes.

• Useful when state is
regularly changing and/or
many other objects need
to know when state has
changed.

Review: simple Ruby example of observers

Rx Programming
in Swift

• RxSwift can be found on
GitHub: https://github.com/
ReactiveX/RxSwift

• Materials from lectures drawn
heavily from RxSwift book by
Pillet, et al.

• Strongly recommended for
students wanting to learn more
about reactive programming in
general and RxSwift in
particular

https://github.com/ReactiveX/RxSwift
https://github.com/ReactiveX/RxSwift
https://github.com/ReactiveX/RxSwift

Key to RxSwift: Observables

The Observable<T> class provides the foundation of Rx
code: the ability to asynchronously produce a sequence of
events that can “carry” an immutable snapshot of data T.
In the simplest words, it allows classes to subscribe for
values emitted by another class over time.

At its heart, an observable is just a sequence

Simple examples of observables

Observable traits

• Singles will emit either a .success(value) or .error
event. .success(value) is actually a combination of the .next
and .completed events. This is useful for one-time processes that will
either succeed and yield a value or fail, such as downloading data or
loading it from disk.

• A Completable will only emit a .completed or .error event. It doesn't
emit any value. You could use a completable when you only care that an
operation completed successfully or failed, such as a file write.

• And Maybe is a mashup of a Single and Completable. It can either emit
a .success(value), .completed, or .error. If you need to implement
an operation that could either succeed or fail, and optionally return a
value on success, then Maybe is your ticket.

Time to look at code…

Next key concept: Subjects

A Subject is an object that can be both an observable and an observer.
There are four types of subjects:

• PublishSubject — starts empty and only emits new elements to
subscribers.

• BehaviorSubject — starts with an initial value and replays it or the
latest element to new subscribers.

• ReplaySubject — initialized with a buffer size and will maintain a
buffer of elements up to that size and replay it to new subscribers.

• Variable — wraps a BehaviorSubject, preserves its current value as
state, and replays only the latest/initial value to new subscribers.

PublishSubjects

• The first subject emits three events and completes

• The second subject subscribes after first event, but gets the other two

• The third subject subscribes after the second event. First subject
notifies both observers of the last event

BehaviorSubjects

• The first subject emits three events and completes

• The second subject subscribes after first event, but gets the first event
immediately and notified of the other events when they occur

• The third subject subscribes after the second event. It gets the prior
event immediately (but not the original) and other events when they
occur

ReplaySubjects

• The first subject emits three events and completes and notifies the
second subject as they occur

• The third subject subscribes after the second event. It gets all the prior
events immediately and is notified of other events when they occur

Code (and quiz) time …

